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Asymptotic Boundary Condition on a Rectangular

Outer Boundary for Modeling Two-Dimensional
Transmission Line Structures

Richard K. Gordon, Member, IEEE, and Set Hin Fook

Abstract— In this paper, the derivation of three asymptotic

boundary conditions is presented. Techniques for implementing
each of these on finite difference meshes with rectangular outer
boundaries are discussed. Numerical results obtained usiug these
boundary conditions iu the finite difference analysis of both
shielded and unshielded transmission lines are shown. We present
detailed convergence studies on the use of each of these boundary

conditions and discuss the memory requirements of each.

I. INTRODUCTION

B ECAUSE of its great importance in the design of in-

tegrated microwave circuit components, the problem of

determining the coefficients of capacitance of a multiconductor

microstrip transmission line has received a great deal of

attention in the literature. See, for instance, [1]–[5]. Among

the methods that have been used are the finite element method

[1], the semi-discrete finite element method [2], the spectral

Green’s function approach [3], integral equation approaches

[4]–[5], and others. In this paper, we present a finite difference

approach for solving this problem. This method can be used

in the analysis of structures having microstrip lines of either

zero or nonzero thickness and either planar or nonplanar

dielectric interfaces. In order to solve the problem with as few

unknowns as possible, we use a finite difference mesh having

a rectangular outer boundary. Using a method that is similar

to that presented by Mittra and Ramahi in [6], we derive three

asymptotic boundary conditions (ABC’s) that can be used with

such a mesh and present a detailed convergence study of each.

II. DERIVATION OF BOUNDARY CONDITIONS

Our goal is to develop boundary conditions that can be used

in problems such as that depicted in Fig. 1; a finite difference
mesh with a rectangular outer boundary encloses a structure

consisting of microstrip lines residing on a grounded dielectric

substrate. In a charge-free region, the electric potential v

behaves as

‘n=l ~
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Fig. 1. Diagram of problem.

where p = (Z2 + ~2)1/2 and @= tan–l(~/x), The

the microstrip lines is balanced by image charge on the ground

plane. Thus, the total charge enclosed by the finite difference

mesh is zero. So, A. must be zero. Furthermore, because the

ground plane is at zero potential and extends to infinity, Co

must be zero as well. So, the equation describing the behavior

of v at the outer boundary of the finite difference mesh is

Boundary

Dielectric

Substrate

charge on

.(p,f#@+qJ
+23(4)+P— ...+ (2)

P3

One of the most widely used boundary conditions in prob-

lems such as this, the shield boundary condition, states that

v = O along the outer boundary of the mesh. As will be

demonstrated in Section IV, this is an approximate boundary
condition which becomes more accurate as the outer boundary

of the mesh is moved further away from the center of charge.

For each of the ABC’s we will derive, we will arrive at an

equation similar to (2), and will then argue that for sufficiently

large values of p, the higher order terms on the right-hand side

make a negligible contribution to the sum and can therefore

be dropped from the equation. At this point, we note that the

shield boundary condition can be viewed in the same light;

that is, the shield boundary condition can be considered to

be a lowest order ABC in which all of the terms on the

right-hand side of (2) have been discarded. For this reason,
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and for the sake of convenience, we will refer to the shield

boundary condition as ABCO in the remainder of this paper.

We now proceed to the derivation of the next lowest order

ABC, which will henceforth be referred to as ABC1. The

treatment is similar to that presented by Mittra and Ramahi

in [6].

If (2) is differentiated with respect to p and the resulting

equation is added to I/p times (2), we arrive at the equation

2A3
~+Lu=.$.—
dp p P4

3A4 4A5.— .— (3)
P5 P6 ‘“’””

We obtain ABC1 by setting the right-hand side of this equa-

tion to zero, an approximation which, as will be demonstrated

by the numerical results, becomes increasingly accurate as

the outer boundary of the mesh is moved away from the

center of charge. Note that for large values of p, the error

incurred by dropping the right-hand side of(2) to obtain ABCO

is proportional to (I/p) 1, while that incurred by dropping

the right-hand side of (3) to obtain ABC1 is proportional to

(1/p)3. Thus, ABC1 is of higher order than ABCO, and would

therefore be expected, in general, to be more accurate. This

will be investigated further in Section IV.

In order to obtain a boundary condition of still higher order,

which we will designate as ABC2, we differentiate (3) with

respect to p and add the resulting equation to 3/p times (3).

The result is

a2v 4 i3v 2A3
~ +–—+;v=—

pap P5
6A4 12As

+—+ —+”.”. (4)
P6 P7

If we use Laplace’s equation to rewrite VPP in terms of VP

and V$4, the resulting equation is

3 l% 1 6’2V
–—++v–3—
pdp p p qbz

2A3 6A4 12A5
–—+—+—— +“””.

P5 P6 P7
(5)

We obtain ABC2 by dropping the right-band side of this

equation; for large values of p, the error incurred by making

this approximation is proportional to (1/p)5. So, indeed,

ABC2 is of higher order than ABCO or ABC1.

III. NUMERICAL IMPLEMENTATION

OF BOUNDARY CONDITIONS

The mathematical expressions for ABCO, ABC1, and ABC2

are

ABco:

U=() (6)

ABcl:

(7)

FMesh Bounday

● TLL ●TL T

● LL ● L
t’ *

● BLL ● BL IB

Fig. 2. Diagram for mesh truncation,

ABC2:

au 2 1 (%7)

~=–sp+vdqbz”
(8)

In the numerical solution of this problem, we enforce

the appropriate Dirichlet boundary condition at each node

residing on a conducting surface and the continuity of the

normal component of the electric flux density at nodes located

on dielectric interfaces. At interior nodes, we enforce the

finite difference representation of Laplace’s equation, which

is written in terms of the value of v at the node itself andl at

each of the four surrounding nodes. But, for nodes on the outer

boundary of the mesh, the imposition of Laplace’s equation

poses a difficulty; there are not four surrounding nodes. we

must find either another equation to enforce or some otlher

way of applying Laplace’s equation. With ABCO, we take the

former alternative; we simply enforce the equation v = O

at the outer boundary of the mesh. With ABC1 and ABC2,

we pursue the second option; we use the ABC to find the

normal derivative of the unknown at the outer boundary of

the mesh. This normal derivative is then used to write the

value of the potential just outside the mesh in terms of the

potential at nodes near the outer boundary. Once this has been

done, Laplace’s equation can be enforced. Thus, we must now

show how (7) and (8) can be used to find the normal derivative

of the un~own at’ the outer boundary of the mesh.

In Fig. 2, P is a node on the right-hand side of the

rectangular outer boundary; T, B, TL, L, BL, TLL, LL, and

BLL are surrounding nodes. The position marked * is outside

the mesh; as a result of this, Laplace’s equation cannot be

enforced at P in the usual way. Our goal is to express the

potential at * in terms of the potential at P and the surrounding

nodes; once this has been done, Laplace’s equation can be

enforced at P. In order to achieve this goal, we must obtain

information about the normal derivative of the potential at

node P. That is, we must find v.(P). In the application of

ABC1, this is rather simple. We use the chain rule and the

relationship between cylindrical and Cartesian coordinates to

rewrite (7) as

Ov 1

()

au

z=
–; V+y — .

Oy
(9)

The finite difference approximation for v.(P) is

v(*) – v(L)
~(p) = ~(x) - z(L)

~ v(*) – v(L)

2A
(lo)
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If (9) is substituted into (10), we obtain

‘v(*) =V(L) – ~

[ 1
. V(P) + Y(P);(F) ‘ (11)

When the finite difference approximation for’% (P), which

is the same as the right-hand side of (10) except that *, L, and

z are replaced by T, B, and V, respectively, is substituted into

(11), the result is

V(*) = CL?)(L)+ cpw(P)

+ c@(T)+ Cl?’V(B) (12)

where

CL=l

2A
cp=– —

X(P)

3y2(P) - 2y(P) Y(B) – ZY(P) Y(T) + Y(T) Y(B)

(Y(P) - Y(T)) (Y(P) - Y(B))

y’(p) – y(B) y(p)

CT = – ~& (Y(T) – Y(P)) (Y(T) – Y(B))

2A y’(p) – y(T) y(p)

CB = – z(P) (v(B) – Y(P)) (Y(B) – Y(T)) “

Equation (12) represents the method of numerical imple-

mentation of ABC1 on the right-hand side of a rectangular

outer boundary. It expresses v(*) in terms of the values of v

at P, T, L, and B. So, Laplace’s equation can now be enforced

at P. A similar method is used on the left-hand side and top

of the outer boundary.

Note that this method of mesh truncation does not increase

the bandwidth of the finite difference matrix. Thus, the use

of ABC1 requires no more computer memory than does the

use of ABCO.

Finding a convenient expression for the normal derivative

of v at P is somewhat more involved when ABC2 is used.

We first use the chain rule to rewrite (8) as

:(P) =
(1+ P;)cos #

“[
OK– ‘(l+ @p) sin+

ay

19’v 82V
+ l?p’ sin’ 4= + ,8p2 cos’ @—~y’

a’v
– 2~p2 sin ~ cos q$—

tlxay 1

where Q = –2/3p and /3 = l/3p.

Substitution of (13) into (10) yields

2A
v(*) =~(L) + (~+ @p) COSf$

[
W(I +/3p) sin@. cW(P) – ~y

8%(P)
m + px’(~) ~y’+ PY2(P) ~xz

(13)

t?%(p)
—

1
2@(P) Y(p) = . (14)

In (14), the goal of expressing v(*) in terms of the values

of v at P and the surrounding nodes has been nearly achieved;

the only remaining difficulty is the presence of the mixed

derivative term. We present a novel approach for the evaluation

of this term; the method is simple and, as will be shown Sec-

tion IV, yields accurate results even when the outer boundary

is quite close to the microstrip lines. We begin by defining

~(x, y) by the equation f(x, Y) = vV($, Y). Thus, VZ~ = ?XO

So, if we can find jz at P in terms of the values of v at P

and the surrounding nodes, we can substitute the result into

(14) and obtain a convenient expression for mesh truncation.
The way we do this is to employ a second-order accurate,

one-sided derivative formula for ~Z at P. This formula is

j.(p) = A~(P) + B~(L) + Cf(LL). (15)

where

(2$(P) - $(L) - z(LL))

A = (x(P) - x(L)) (z(P) - x(LL)) ‘

(z(P) - x(LL))

B = (x(L) - z(P)) (x(L) - x(LL))

(x(P) - x(L))

c = X(LL) – X( P))(X(LL) – X(L)) “

Recall that in (15), .f~ (P) = V.v (P), f(p) = vv(P), f

(L) = WV(L), and j(LL) = v, (LL). If we make these
substitutions in (15), substitute the resulting expression for

VZV(P) into (14), use Laplace’s equation to rewrite vZZ in

(14) in terms of vvy, and then use the finite difference

approximations for all derivatives with respect to y, we obtain

v(*) = c~v(L) + CPU(P) + G@)

+ C~W(B) + CUW(LL)

+ C~~v(TL) + C~~V(BL)

+ CTL~V(TLL) + CB~~V(BLL) (16)

where CL, Cp, CT, cB, CLL, CTL, CBL~ CTLL~ and CBLL

are shown at the bottom of the next page.

Equation (16) represents the method of numerical imple-

mentation of ABC2 on the right-hand side of a rectangular

outer boundary. It expresses v(*) in terms of the values of v

at P and the surrounding nodes. So, Laplace’s equation can

now be enforced at node P, which is on the right-hand side

of the ouer boundary. A similar approach is used on the left-

hand side and top of the outer boundary. This method of mesh

truncation will, in general, increase the bandwidth of the finite

difference matrix.

The only remaining question is the method used for mesh

truncation at the two upper corners of the mesh. The method,

which was used in both ABC1 and ABC2, is illustrated in

Fig. 3, which shows the upper right corner of the mesh. (The

spacing between the nodes in this figure has been greatly

exaggerated fm the sake of clarity.) At the corner point P,

an interpolation method is used tQ write v(P) in terms of the

values of v at points B and L. We begin by noting that since

p achieves its maximum value at the corners of the mesh, the
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contribution made by the higher order terms to the summation

appearing on the right-hand side of (2) will be smaller at the

corners of the mesh than at any other nodes. For this reason,

and in order to avoid any further increase in the bandwidth

of the finite difference matrix, we retain only the first term of

the right-hand side of (2) in the mesh truncation technique we

use at the corners. Thus, in the vicinity of the corner, we have

Al(4) = v(p, ~)p. Using linear interpolation, we write the

value of Al at #(P) in terms of its value at #(B) and #(L) as

Al(#(P)) = Al(qJ(B))

(17)

Since Al(~) = v(p, #)p near the corner, this becomes

p(P) V(P) = p(l?) V(B)

+ p(L) V(L) – p(q ‘V(B)

()(L) - ()(B) (4(H - 4(B)).

(18)

After (18) is rearranged, we obtain

[

q5(P) - 4(L)
V(P) /9(P) + V(B) p(B) 4(L) _ 4(B)

[ 1+v(L) –p(L) ‘(p) – 4(B) = ~
@(L) - #(B)

(19)

where p(P) = (z(P)’ + y(P)2)1/2 and #(P) =

tan-l (g(P) /z(P)).

This is the equation that is enforced at the upper right corner

of the mesh. A similar equation is enforced at the upper left

corner.

As was mentioned above, for a given mesh, the use of

ABC2 will requir& more memory than will the use of ABCO or

ABC1. As we will now show, for unshielded structures, this

disadvantage is more than compensated for by the fact that

ABC2 allows the accurate solution of the microstrip problem

with a much smaller mesh than that required by ABCO or

ABcl.

Y
L

o

Fig. 3. Mesh truncation at corner,

IV. NUMERICAL RESULTS

We present numerical results for two problems. The first

is depicted in Fig. 4. Two 3 mil x 1 mil conductors are

located in the free space region between two grounded planes.

The bottom surface of each conductor is 1 mil above the

lower ground plane, while the top surface is 3 mil below the

upper one. The separation between the conductors is 2 roil.

We use the finite difference method to find the coefficients

of capacitance. We use a mesh density of 225 nodes/mi12.

The mesh is truncated at a distance D to the left of the left

conductor and D to the right of the right conductor. The ABC

is enforced along these two vertical sides. The coefficients

of capacitance are determined first using ABCO, then AEMol,

and finally ABC2. The value of D is then increased and

the procedure is repeated. The numerical results are recorded

in Figs. 5 and 6. In the above derivations, it was predicted

that for each of the ABC’s, the numerical solution would

converge to the actual solution as the outer boundary of the

mesh is moved away from the center of charge. In Figs. 5

and 6, we see that this is indeed the case. The final value

for Cll is 1.623 pF/in; for C12, it is –O. 151 pF/in. (The

numerically determined values for C21 and C22, respectively,

were, as expected, identical to the values obtained for C12

and C1l. ) Weeks [4] analyzed this same structure; his values

for C1l and C12, respectively, are 1.608 and –O. 150 pF/in.

The differences between the values obtained using the finite

difference approach and those obtained by Weeks are 0.93:3%

CL = 1 + ~(/?~(P)2GG – 2/3g(P) y(p)~D)

Cp =,~[a – D(l + @p) sin @+ ~y(P)2G + ~x(P)2H – 2f3z(P) y(P) AD]

CT = ~[–E(l + ~p) sin@+ PZ(P)2HH – 2Pz(P) Y(p)A~l

CB = 7[–F(l + Dp) sin q$+ RE(P)2HHH – V3Z(P) Y($’)IW

C~~ = ~[@/(P)2GGG – 2h(P) y(P) CD]

CTL = 7[–2~z(P) ?J(P)BE]

CBL = ‘y[-2@(P) y(P)l?F]

CTLL = 7[-2/?$(P) y(P)cE]

c~~~ = ‘y[-2/?x(P) y(P)cF].
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TABLE I
NUMBER OF ENTRIES IN BANDED MATRIX FOR FIRST NUMERICAL _CASE

[ D (roils) ABCO ABC1 ASC2

II 0,133 I 2,175,500 I
2,175,500

I 43’0000 II

0.267 2,245,116 2,245,116 4,509,840

0.400 2,314,732 2,314,732 4,649,680

TABLE II
NUMBER OF ENTRIES IN BANDED MATRIX FOR SBCOND NUMERICAL CASE

D (nils) P.Bco ABC1 ABC2

0.300 509,124 509,124 1,025,904

0.500 581,854 581,8S4 1,172,080

II 0.700 I 661,200 I 661,200
I “3’520 II

II 0.533 I 2,384,348 I
2,384,348

I 48’’’520 II II 1.000 I 793,254
I

793,254
I 15’’810 II

1 0.733 2,488,772 2,488,772 4,999,280

1.000 2,628,004 2,628,004 5,278,960 I
II 1.333 ] .2,80’2,044 I 2,802,044 I 5’28560 II

2.000 3,1 S0,124 3,150,124 6,327,760

3.000 3,612,244 3,672,244 7,376,560

4.000 4,194,364 4,194,364 8,425,360

5.000 4,716,484 4,716,484 9,474,160

for Cll and 0.667% for Clz. In Section II, we predicted that,

for a given mesh size, the results obtained using ABC2 would

be more accurate than those obtained using ABC1, which

would, in turn, be more accurate than those obtained using

ABCO. This prediction is also verified. In fact, when ABC2

is used, even when D is as small as 0.133 roil, the value for

CII differs from the final converged value by only 4.067%,

and the value for Clz differs from its final value by 0.662!ZJ.

To obtain this same degree of accuracy in Cll and CH using

ABC1, D must be at least 1.333 roil; using ABCO, D must

be at least 2.0 roil. Recall, however, that while the use of

ABCO or ABC1 does not increase the bandwidth of the finite

difference matrix, the use of ABC2 does. The effect this has

on the total number of entries in the banded matrix is shown

in Table I. This table shows the total number of entries in the

banded matrix for each of the boundary conditions for each

value of D. We note that for a given value of D, the amount

of memory required by ABC1 is the same as that required

by ABCO, while that required by ABC2 is twice as much.

But, as we have just mentioned, in order to achieve the same

degree of accuracy with ABC1 as that obtained using ABC2,

a larger value of D must be used; and to achieve this with

ABCO, it must be made larger still. The number of entries

in the banded matrix when ABC2 is used at D = 0.133

mil is 4370000. The same degree of accuracy is obtained

using ABC1 at D = 1.333 roil; the number of entries in the
banded matrix for this computation is 2802000. If we use

ABCO at D = 2.0, the number of entries is 3150124. Thus,

for this case of a structure that is completely shielded above

and below, the extra cost of using ABC2 is not justified; the

problem can be Solved more economically using ABC1 or even

ABCO. The reason for this is that, for this case of a structure

that is bounded above and below, the number of unknowns

increases only linearly with D. Thus, even though the value of

D that must be used to obtain reasonable results using ABC1

is quite a bit larger than that required when ABC2 is used, the

fact that ABC2 doubles the bandwidth of the finite difference

matrix makes ABC1 preferable to ABC2. But for the case of

an unshielded structure, the situation is quite different.

II 1.400 I 995,170
I

995,170 I 2002’330II
II 2,500 I 1,720,554 I ,,7,0,,5, ] 3,458,400 1]

3.500 2,628,004 2,628,004 5,278,960

4.500 3,808,854 3,808,854 7,647,120

II S.500 I 5/299,104 I 5299,104 I 10634.880 II

6.000 6,171,504 6,171,504 12,383,610

8.000 10,614,604 10,614,604

9.000 13,471,254 13,471,254

Ground Plane

1-D 3

I -4D

\ T
Mesh Boundary Ground Plane

/
Mesh Bounda~

Fig. 4. Shielded transmission line for first numerical case.

L--J
— ABC2
— ABC1
— ABCO

o 1 2 3 4 5 6

D (roils)

Fig. 5. Numerical value obtained for Cl 1 as a function of D.

The second structure we consider is shown in Fig. 7. The

geometry is the same as that considered in the first case,

except that the upper ground plane has been removed and a

dielectric substrate of relative permittivity 2.0 has been placed

under the conductors. Again, since C12 = C21 and, for this

geometry, C1l = C22, we present results only for C1l and
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-0.02- - I — ABC2 —

-0.04-
— ABC1
— ABCO

-0.06. Y %

2
~ -0.oq-

3 .0.10-
c1
~ -0.12-

-0.14- I 1
-0.16- T 4

-0.18-

-0.201 1
0 1 2 4 5. 6

D (m?fs)

Fig. 6. Numerical value obtained for Cl 2 as a function of D.

C12. The procedure we employ in this problem differs from

that followed in the first case in three respects. First, since

the upper ground plane has been removed, we must apply

an ABC on the top of the mesh as well as on the sides.

Second, numerical experiment has shown that in order to

obtain accurate results for both Cl 1 and CM, it is insufficient

to increase just D or H alone. Both must be moved away from

the center of charge. So, as we increased D, we increased H by

the same amount, always maintaining Hat the value of D + 2.

Note that this means that the number of nodes in the mesh will

increase as the square of D as the mesh is enlarged. The final

difference from the procedure we employed in the first problem

is that we now use a mesh density of 100 nodes/mi12. This

lowered mesh density was employed so that relatively large

values of D could be used without exceeding the permitted

storage of the computer. Even then, the results for ABCO,

which are shown along with the results for ABC1 and ABC2

in Table II and Figs. 8 and 9, never completely converged

before the memory capacity of the computer was reached. The

value for Cl 1 has converged; that for (.712 is clearly doing so

as well, but has not yet reached its final value. For ABC1

and ABC2, the values for both Cl 1 and CM have converged.

The final value for CI1 is 2.378 pF/in; for C12, it is –0.219

pF/in. The results obtained by Weeks [4] are 2.372 pF/in for

Cll and –0.218 pF/in for Clz. The differences between the

values obtained using the finite difference approach and those

obtained by Weeks are 0.253T0 for Cll and 0.459% for CIZ..

The value obtained for C1l using ABC2 at D = 0.3 mil differs

from the final value by 0.0841Yo; for CM, the difference is

2.283%. This calculation using ABC2 at D = 0.3 mil required

the storage of a banded matrix having 1025903 entries. To

achieve the same accuracy with ABC1, D must be at least 4.5

roil. This computation required a banded matrix with 3808854

entries. Thus, the amount of storage required is almost four

times that required when ABC2 is used. If ABCO is used, even
when D = 9.0 mil and the number of entries in the banded

matrix is 13471254, the results obtained are not as accurate as

those obtained using ABC2 at D = 0.3 roil. Clearly, for this

unshielded problem, ABC2 is superior to ABC1 or ABCO.

With ABC2, impressive accuracy can be obtained using a

banded matrix with as few as 1 million entries.

L D
H

I i
D

I —’a— 1 &2— I

I

Ground Plane

Fig. 7. Unshielded transmission line for second numerical case.

4- !

— ABC2
— ABC1

3-
— ABCO

‘2- 1

1-,

n-l
0 2 4 6 8 10

D (mifs)

Fig. 8. Numerical value obtained for Cl 1 as a function of D.

0.00- —.
I

— ABC2

-0,05- . — ABC1 –.
~ ABCO

= -0.10
2
k
3 .0.15- \

N

G
-0.20-

mn -

-0.25- -

-030 ‘? .1

0 2 4 6
D (roils)

8 10

Fig. 9. Numerical value obtained for CIZ as a function of D.

V. CONCLUSIONS

In this paper, we have presented the derivation of tlhree

asymptotic boundary conditions. We have shown how these

boundary conditions can be implemented numerically, and
have presented detailed convergence studies of their use. We

have seen that for a given mesh, ABC2 is more accurate than

ABC1, which, in turn, is more accurate than ABCO. Since

ABC1 requires no more storage than ABCO, this increased

accuracy means that, in terms of memory, ABC1 is always

preferable to ABCO. Because ABC2 doubles the bandwidth of
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the finite difference matrix, in some cases where the number of

nodes increases slowly as the mesh is enlarged, ABC1 might

be preferable to ABC2 even though its use requires a larger

mesh. But for an unshielded structure, ABC2 is clearly the

best choice. This boundary condition is simple to implement

numerically and yields consistently accurate results. It appears

to be an attractive option for the truncation of finite difference

meshes used in the analysis of unshielded transmission lines.
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