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A Finite Difference Approach that Employs an
Asymptotic Boundary Condition on a Rectangular
Outer Boundary for Modeling Two-Dimensional
Transmission Line Structures

Richard K. Gordon, Member, IEEE, and Set Hin Fook

Abstract— In this paper, the derivation of three asymptotic
boundary conditions is presented. Techniques for implementing
each of these on finite difference meshes with rectangular outer
boundaries are discussed. Numerical results obtained using these
boundary conditions in the finite difference analysis of both
shielded and unshielded transmissicn lines are shown. We present
detailed convergence studies on the use of each of these boundary
conditions and discuss the memory requirements of each.

1. INTRODUCTION

ECAUSE of its great importance in the design of in-

tegrated microwave circuit components, the problem of
determining the coefficients of capacitance of a multiconductor
microstrip transmission line has received a great deal of
attention in the literature. See, for instance, [1}-[5]. Among
the methods that have been used are the finite element method
[1], the semi-discrete finite element method [2], the spectral
Green’s function approach [3], integral equation approaches
[4}-[5], and others. In this paper, we present a finite difference
approach for solving this problem. This method can be used
in the analysis of structures having microstrip lines of either
zero or nonzero thickness and either planar or nonplanar
dielectric interfaces. In order to solve the problem with as few
unknowns as possible, we use a finite difference mesh having
a rectangular outer boundary. Using a method that is similar
to that presented by Mittra and Ramahi in [6], we derive three
asymptotic boundary conditions (ABC’s) that can be used with
such a mesh and present a detailed convergence study of each.

II. DERIVATION OF BOUNDARY CONDITIONS

Our goal is to develop boundary conditions that can be used
in problems such as that depicted in Fig. 1; a finite difference
mesh with a rectangular outer boundary encloses a structure
consisting of microstrip lines residing on a grounded dielectric
substrate. In a charge-free region, the electric potential v
behaves as

Woud) = Cot Ao p+ > 22
n=1
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Fig. 1. Diagram of problem.
where p = (22 4+ ¢?)/2 and ¢ = tan~'(y/z). The charge on
the microstrip lines is balanced by image charge on the ground
plane. Thus, the total charge enclosed by the finite difference
mesh is zero. So, Ag must be zero. Furthermore, because the
ground plane is at zero potential and extends to infinity, Cy
must be zero as well. So, the equation describing the behavior
of v at the outer boundary of the finite difference mesh is
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One of the most widely used boundary conditions in prob-
lems such as this, the shield boundary condition, states that
v = 0 along the outer boundary of the mesh. As will be
demonstrated in Section IV, this is an approximate boundary
condition which becomes more accurate as the outer boundary
of the mesh is moved further away from the center of charge.
For each of the ABC’s we will derive, we will arrive at an
equation similar to (2), and will then argue that for sufficiently
large values of p, the higher order terms on the right-hand side
make a negligible contribution to the sum and can therefore
be dropped from the equation. At this point, we note that the
shield boundary condition can be viewed in the same light;
that is, the shield boundary condition can be considered to
be a lowest order ABC in which all of the terms on the
right-hand side of (2) have been discarded. For this reason,
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and for the sake of convenience, we will refer to the shield
boundary condition as ABCO in the remainder of this paper.
We now proceed to the derivation of the next lowest order
ABC, which will henceforth be referred to as ABC1. The
treatment is similar to that presented by Mittra and Ramahi
in [6].

If (2) is differentiated with respect to p and the resulting
equation is added to 1/p times (2), we artive at the equation

1 A 2
dp p ot
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We obtain ABCI1 by setting the right-hand side of this equa-
tion to zero, an approximation which, as will be demonstrated
by the numerical results, becomes increasingly accurate as
the outer boundary of the mesh is moved away from the
center of charge. Note that for large values of p, the error
incurred by dropping the right-hand side of (2) to obtain ABC0
is proportional to (1/p)!, while that incurred by dropping
the right-hand side of (3) to obtain ABC1 is proportional to
(1/p)3. Thus, ABCl is of higher order than ABCO, and would
therefore be expected, in general, to be more accurate. This
will be investigated further in Section IV.

In order to obtain a boundary condition of still higher order,
which we will designate as ABC2, we differentiate (3) with
respect to p and add the resulting equation to 3/p times (3).
The result is
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If we use Laplace’s equation to rewrite v,, in terms of v,
and vg4, the resulting equation is
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We obtain ABC2 by dropping the right-hand side of this
equation; for large values of p, the error incurred by making

this approximation is proportional to (1/p)%. So, indeed,
ABC2 is of higher order than ABCO or ABCI.

ITII. NUMERICAL IMPLEMENTATION
OF BOUNDARY CONDITIONS

The mathematical expressions for ABCO, ABC1, and ABC2
are
ABCO:

(6)
ABCl:
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In the numerical solution of this problem, we enforce
the appropriate Dirichlet boundary condition at each node
residing on a conducting surface and the continuity of the
normal component of the electric flux density at nodes located
on dielectric interfaces. At interior nodes, we enforce the
finite difference representation of Laplace’s equation, which
is written in terms of the value of v at the node itself and at
each of the four surrounding nodes. But, for nodes on the outer
boundary of the mesh, the imposition of Laplace’s equation
poses a difficulty; there are not four surrounding nodes. we
must find either another equation to enforce or some other
way of applying Laplace’s equation. With ABCO, we take the
former alternative; we simply enforce the equation v = 0
at the outer boundary of the mesh. With ABC1 and ABC2,
we pursue the second option; we use the ABC to find the
normal derivative of the unknown at the outer boundary of
the mesh. This normal derivative is then used to write the
value of the potential just outside the mesh in terms of the
potential at nodes near the outer boundary. Once this has been
done, Laplace’s equation can be enforced. Thus, we must now
show how (7) and (8) can be used to find the normal derivative
of the unknown at the outer boundary of the mesh.

In Fig. 2, P is a node on the right-hand side of the
rectangular outer boundary; T, B,TL,L, BL,TLL,LL, and
BLL are surrounding nodes. The position marked * is outside
the mesh; as a result of this, Laplace’s equation cannot be
enforced at P in the usual way. Our goal is to express the
potential at * in terms of the potential at P and the surrounding
nodes; once this has been done, Laplace’s equation can be
enforced at P. In order to achieve this goal, we must obtain
information about the normal derivative of the potential at
node P. That is, we must find v,(P). In the application of
ABCI, this is rather simple. We use the chain rule and the
relationship between cylindrical and Cartesian coordinates to
rewrite (7) as

ov 1 v
A ). 9
e o (v +y 3y) &)
The finite difference approximation for v;{P) is
_8_11( ) = v(x) —v(L)
oz ' x(x) — x(L)
_v(0) —v(L)
= 5A . (10)
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If (9) is substituted into (10), we obtain

2A
o(x) =v(E) - o7y
o) +y<P>§—‘y’<P>} 1)

When the finite difference approximation for vy (P), which
is the same as the right-hand side of (10) except that *, L, and
x are replaced by T, B, and y, respectively, is substituted into
(11), the result is

v() = Cro(L) + Cpu(P)

+ Crv(T) + Cpu(B) (12)
where
L= 1
20
r="p
 3y2(P) — 2y(P) y(B) — 2y(P) y(T) + y(T) y(B)
(y(P) — y(T))(y(P) — y(B))
o2 () -yB)uP)
T 7 2(P) W(T) - y(P)(u(T) - y(B))
Cp—_ 28 y*(P) — y(T) y(P)

#(P) (y(B) - y(P))(y(B) — y(T))

Equation (12) represents the method of numerical imple-
mentation of ABC1 on the right-hand side of a rectangular
outer boundary. It expresses v(*) in terms of the values of v
at P,T, L, and B. So, Laplace’s equation can now be enforced
at P. A similar method is used on the left-hand side and top
of the outer boundary.

Note that this method of mesh truncation does not increase
the bandwidth of the finite difference matrix. Thus, the use
of ABC1 requires no more computer memory than does the
use of ABCO.

Finding a convenient expression for the normal derivative
of v at P is somewhat more involved when ABC2 is used.
We first use the chain rule to rewrite (8) as
2 )= (T s

p) cos ¢

. [av - g—Z(l + Bp) sin ¢
8%v 8%
2.2 97V 2 2,070
+ Bp”sin® -5 + fp” cos ¢ 2
9%y

— 2 o -
26p° sin ¢ cos ¢ B2y

(13)

where o = —2/3p and § = 1/3p.
Substitution of (13) into (10) yields

2A
V() =l T ) cos 6
- [ow(P) - 33(; )(1+ Bp) sin ¢
2y 2y
+ ﬂyz(p)aaéf) + ﬂwz(P)aTy(f—)
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d*v(p)

- 282(P)u(P) o |

(14)

In (14), the goal of expressing v(x) in terms of the values
of v at P and the surrounding nodes has been nearly achieved;
the only remaining difficulty is the presence of the mixed
derivative term. We present a novel approach for the evaluation
of this term; the method is simple and, as will be shown Sec-
tion IV, yields accurate results even when the outer boundary
is quite close to the microstrip lines. We begin by defining
f(z,y) by the equation f(z,y) = vy(z,y). Thus, vay = fo.
So, if we can find f, at P in terms of the values of v at P
and the surrounding nodes, we can substitute the result into
(14) and obtain a convenient expression for mesh truncation.
The way we do this is to employ a second-order accurate,
one-sided derivative formula for f,, at P. This formula is

fo(P) = Af(P)+ Bf(L) + Cf(LL). (15)
where
4 (2a(P)—a(l) — o(LL))
(z(P) — =(L))(x(P) — x(LL))’
oo (@(P)=a(LL)
(2(L) — 2(P))(z(L) — x(LL))
oo (2(P) - a(L))
z(LL) — z(P))(z(LL) — z(L))’

Recall that in (15), fo(P) = vey(P), f(P) = vy(P), f
(L) = wvy(L), and f(LL) = wy(LL). If we make these
substitutions in (15), substitute the resulting expression for
vgy(P) into (14), use Laplace’s equation to rewrite vz, in
(14) in terms of vy, and then use the finite difference
approximations for all derivatives with respect to y, we obtain

U(*) = CL’U(L) + Cp’l)(P) -+ CT'U(T)
+ CBU(B) + CLL’U(LL)
+ OTLU(TL) -+ CBLU(BL)

+ Crprvo(TLL) + Cerrv(BLL)  (16)

where Cr,Cp,Cr,Cp,Cr1,Cr1,CBL,Crrr, and Cprr
are shown at the bottom of the next page.

Equation (16) represents the method of numerical imple-
mentation of ABC2 on the right-hand side of a rectangular
outer boundary. It expresses v(x) in terms of the values of v
at P and the surrounding nodes. So, Laplace’s equation can
now be enforced at node P, which is on the right-hand side
of the ouer boundary. A similar approach is used on the left-
hand side and top of the outer boundary. This method of mesh
truncation will, in general, increase the bandwidth of the finite
difference matrix.

The only remaining question is the method used for mesh
truncation at the two upper corners of the mesh. The method,
which was used in both ABC1 and ABC2, is illustrated in
Fig. 3, which shows the upper right corner of the mesh. (The
spacing between the nodes in this figure has been greatly
exaggerated for the sake of clarity.) At the corner point P,
an interpolation method is used to write v(P) in terms of the
values of v at points B and L. We begin by noting that since
p achieves its maximum value at the corners of the mesh, the
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contribution made by the higher order terms to the summation
appearing on the right-hand side of (2) will be smaller at the
corners of the mesh than at any other nodes. For this reason,
and in order to avoid any further increase in the bandwidth
of the finite difference matrix, we retain only the first term of
the right-hand side of (2) in the mesh truncation technique we
use at the corners. Thus, in the vicinity of the corner, we have
A1(¢) = v(p,P)p. Using linear interpolation, we write the
value of Ay at ¢(P) in terms of its value at ¢(B) and ¢(L) as

A1(¢(P)) = A1(¢(B))

L+ Ag(L)) — Ai(¢(B))

(¢(P) — &(B)).

#(L) = 9(B)
17)
Since A1($) = v(p, $)p near the corner, this becomes
o(P)o(P) = p(B) u(B)
+ LR DD (4p) - o8))
(18)
After (18) is rearranged, we obtain
oP)oP) +0(8) o) 5T )
o) - 5P 2D <0 )

where p(P) =
tan~" (y(P)/z(P)).

This is the equation that is enforced at the upper right corner
of the mesh. A similar equation is enforced at the upper left
corner.

As was mentioned above, for a given mesh, the use of
ABC2 will requirt more memory than will the use of ABCO or
ABC1. As we will now show, for unshielded structures, this
disadvantage is more than compensated for by the fact that
ABC2 allows the accurate solution of the microstrip problem
with a much smaller mesh than that required by ABCO or
ABCL.

(@(P)? + y(P)*)!/? and §(P) =
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Fig. 3. Mesh truncation at corner.

IV. NUMERICAL RESULTS

We present numerical results for two problems. The first
is depicted in Fig. 4. Two 3 mil x 1 mil conductors are
located in the free space region between two grounded planes.
The bottom surface of each conductor is 1 mil above the
lower ground plane, while the top surface is 3 mil below the
upper one. The separation between the conductors is 2 mil.
We use the finite difference method to find the coeficients
of capacitance. We use a mesh density of 225 nodes/mil?.
The mesh is truncated at a distance D to the left of the left
conductor and D to the right of the right conductor. The ABC
is enforced along these two vertical sides. The coefficients
of capacitance are determined first using ABCO, then ABC1,
and finally ABC2. The value of D is then increased and
the procedure is repeated. The numerical results are recorded
in Figs. 5 and 6. In the above derivations, it was predicted
that for each of the ABC’s, the numerical solution would
converge to the actual solution as the outer boundary of the
mesh is moved away from the center of charge. In Figs. 5
and 6, we see that this is indeed the case. The final value
for C'y; is 1.623 pF/in; for Cys, it is —0.151 pF/in. (The
numerically determined values for Cay and Cys, respectively,
were, as expected, identical to the values obtained for Cys
and Cq7.) Weeks [4] analyzed this same structure; his values
for C'1; and (g, respectively, are 1.608 and —0.150 pF/in.
The differences between the values obtained using the finite
difference approach and those obtained by Weeks are 0.933%

Cr = 1+(By(P)*GG — 26z(P) y(P)BD)

Cp =,7la — D(1 + fp) sin ¢ + By(P)*G + fz(P)*H — 202(P) y(P)AD]
Cr =[~E(1 + Bp) sin ¢ + Bz(P)*HH — 2Bz(P) y(P)AE]

Cp = v[-F(1 + Bp) sin ¢ + Bx(P)2HHH — 26z(P) y(P)AF]

Crr, = 7[By(P)’GGG - 2Bz(P) y(P)CD]

Crr = v[-26z(P) y(P)BE]
Cpr = v[-2B8=(P)y(P)BF]
Crrr = v[-26z(P)y(P)CE]
Cprr = 7[-2B8x(P)y(P)CF].
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TABLE 1 TABLE II
NUMBER OF ENTRIES IN BANDED MATRIX FOR FIRST NUMERICAL CASE NUMBER OF ENTRIES IN BANDED MATRIX FOR SECOND NUMERICAL CASE
D{mils) ABCO ABC1 ABC2 D{mils) ABCO ABC1l ABC2
0.133 2,175,500 2,175,500 4,370,000 0.300 509,124 509,124 1,025,904
0.267 2,245,116 2,245,116 4,509,840 0.500 581,854 581,854 1,172,080
0.400 2,314,732 2,314,732 4,649,680 0.700 661,200 661,200 1,331,520
0.533 2,384,348 2,384,348 4,789,520 1.000 793,254 793,254 1,596,810
0.733 2,488,772 2,488,772 4,999,280 1.400 $95,170 995,170 2,002,330
1.000 2,628,004 2,628,004 5,278,960 2.500 1,720,554 1,720,554 3,458,400
1.333 2,802,044 2,802,044 5,628,560 3.500 2,628,004 2,628,004 5,278,960
2.000 3,150,124 3,150,124 6,327,760 4.500 3,808,854 3,808,854 7,647,120
3.000 3,672,244 3,672,244 7,376,560 5.500 5,299,104 5,299,104 10,634,880
4.000 4,194,364 4,194,364 8,425,360 6.000 6,171,504 6,171,504 12,383,610
5.000 4,716,484 4,716,484 9,474,160 8,000 10,614,604 10,614,604
9.000 13,471,254 13,471,254

for C1 and 0.667% for Ci2. In Section II, we predicted that,

for a given mesh size, the results obtained using ABC2 would Ground Plane

be more accurate than those obtained using ABCI, which

would, in turn, be more accurate than those obtained using

ABCO. This prediction is also verified. In fact, when ABC2 T

is used, even when D is as small as 0.133 mil, the value for o 3 5

C1, differs from the final converged value by only 4.067%, -— —

and the value for Cy» differs from its final value by 0.662%. +—— 3 — l «— 3 —»

To obtain this same degree of accuracy in C1 and Ci5 using ' 2 _- 1

ABC1, D must be at least 1.333 mil; using ABCO, D must

be at least 2.0 mil. Recall, however, that while the use of \ 1 ,J

ABCO or ABC1 does not increase the bandwidth of the finite
difference matrix, the use of ABC2 does. The effect this has
on the total number of entries in the banded matrix is shown
in Table I. This table shows the total number of entries in the
banded matrix for each of the boundary conditions for each
value of DD. We note that for a given value of D, the amount
of memory required by ABCI1 is the same as that required
by ABCO, while that required by ABC2 is twice as much.
But, as we have just mentioned, in order to achieve the same
degree of accuracy with ABC1 as that obtained using ABC2,
a larger value of D must be used; and to achieve this with
ABCO, it must be made larger still. The number of entries
in the banded matrix when ABC2 is used at D = 0.133
mil is 4370000. The same degree of accuracy is obtained
using ABC1 at D = 1.333 mil; the number of entries in the
banded matrix for this computation is 2802 000. If we use
ABCO at D = 2.0, the number of entries is 3150 124. Thus,
for this case of a structure that is completely shielded above
and below, the extra cost of using ABC2 is not justified; the
problem can be solved more economically using ABC1 or even
ABCO. The reason for this is that, for this case of a structure
that is bounded above and below, the number of unknowns
increases only linearly with D. Thus, even though the value of
D that must be used to obtain reasonable results using ABC1
is quite a bit larger than that required when ABC2 is used, the
fact that ABC2 doubles the bandwidth of the finite difference
matrix makes ABC1 preferable to ABC2. But for the case of
an unshielded structure, the situation is quite different.

Ground Plane Mesh Boundary

Mesh Boundary

Fig. 4. Shielded transmission line for first numerical case.

4 1 E
—o— ABQC2
—a—— ABCl

—=—— ABCO

C11 (pK/in)

0 1 2 3 4 5 6
D (mils)

Fig. 5. Numerical value obtained for Cy1 as a function of D.

The second structure we consider is shown in Fig. 7. The
geometry is the same as that considered in the first case,
except that the upper ground plane has been removed and a
dielectric substrate of relative permittivity 2.0 has been placed
under the conductors. Again, since Cijo = C3; and, for this
geometry, Cy; = Cae, we present results only for Cy; and
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Fig. 6. Numerical value obtained for C12 as a function of D.

(2. The procedure we employ in this problem differs from
that followed in the first case in three respects. First, since
the upper ground plane has been removed, we must apply
an ABC on the top of the mesh as well as on the sides.
Second, numerical experiment has shown that in order to
obtain accurate results for both C';; and C}9, it is insufficient
to increase just D or H alone. Both must be moved away from
the center of charge. So, as we increased D, we increased H by
the same amount, always maintaining H at the value of D 42.
Note that this means that the number of nodes in the mesh will
increase as the square of D as the mesh is enlarged. The final
difference from the procedure we employed in the first problem
is that we now use a mesh density of 100 nodes/mil>. This
lowered mesh density was employed so that relatively large
values of D could be used without exceeding the permitted
storage of the computer. Even then, the results for ABCO,
which are shown along with the results for ABC1 and ABC2
in Table II and Figs. 8 and 9, never completely converged
before the memory capacity of the computer was reached. The
value for €1, has converged; that for C'5 is clearly doing so
as well, but has not yet reached its final value. For ABC1
and ABC2, the values for both C;; and Cis have converged.
The final value for Cy; is 2.378 pF/in; for (g, it is —0.219
pF/in. The results obtained by Weeks [4] are 2.372 pF/in for
C11 and —0.218 pF/in for Cyo. The differences between the
values obtained using the finite difference approach and those
obtained by Weeks are 0.253% for Cy; and 0.459% for Cy3.
The value obtained for C1; using ABC2 at D = 0.3 mil differs
from the final value by 0.0841%; for Ci2, the difference is
2.283%. This calculation using ABC2 at D = 0.3 mil required
the storage of a banded matrix having 1025903 entries. To
achieve the same accuracy with ABC1, D must be at least 4.5
mil. This computation required a banded matrix with 3 808 854
entries. Thus, the amount of storage required is almost four
times that required when ABC2 is used. If ABCQ is used, even
when D = 9.0 mil and the number of entries in the banded
matrix is 13 471 254, the results obtained are not as accurate as
those obtained using ABC2 at D = 0.3 mil. Clearly, for this
unshielded problem, ABC2 is superior to ABC1 or ABCO.
With ABC2, impressive accuracy can be obtained using a
banded matrix with as few as 1 million entries.
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Mesh Boundary

Ground Plane

Fig. 7. Unshielded transmission line for second numerical case.
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Fig. 8. Numerical value obtained for C'1; as a function of D.
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Fig. 9. Numerical value obtained for C12 as a function of D.

V. CONCLUSIONS

In this paper, we have presented the derivation of three
asymptotic boundary conditions. We have shown how these
boundary conditions can be implemented numerically, and
have presented detailed convergence studies of their use. We
have seen that for a given mesh, ABC2 is more accurate than
ABC1, which, in turn, is more accurate than ABCO. Since
ABC1 requires no more storage than ABCO, this increased
accuracy means that, in terms of memory, ABCI is always
preferable to ABCO. Because ABC2 doubles the bandwidth of
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the finite difference matrix, in some cases where the number of
nodes jncreases slowly as the mesh is enlarged, ABC1 might
be preferable to ABC2 even though its use requires a larger
mesh. But for an unshielded structure, ABC2 is clearly the
best choice. This boundary condition is simple to implement
numerically and yields consistently accurate results. It appears
to be an attractive option for the truncation of finite difference
meshes used in the analysis of unshielded transmission lines.
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